Name:	
Student ID:	
Section:	
Instructor:	

Math 113 (Calculus 2) Exam 3 October 30 – November 3, 2009

Instructions:

- 1. Work on scratch paper will not be graded.
- 2. Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
- 3. Simplify your answers. Expressions such as $\ln(1)$, e^0 , $\sin(\pi/2)$, $\tan^{-1}(1)$, etc. must be simplified for full credit.
- 4. Calculators are not allowed.

For Instructor use only.

#	Possible	Earned	#	Possible	Earned
M.C.	40		14	16	
11	9		15	6	
12	9		16	6	
13	9		17	5	
			Total	100	

Multiple Choice (40 points). Fill in the answer to each problem on your scantron. Make sure your name, section and instructor is on your scantron.

- 1. Find the length of the curve $y = \ln(\cos x), 0 \le x \le \pi/4$. A. $\ln(1 + \sqrt{2})$ B. $\ln(1 + \sqrt{3})$ C. $\ln\sqrt{3}$ D. $\ln(2 + \sqrt{2})$ E. $\ln(2 + \sqrt{3})$ F. None of these.
- 2. Find the length of the curve $y = \frac{x^2}{4} \frac{1}{2}\ln x, 1 \le x \le 2$. A. $1 + \ln 2$ B. $\frac{3}{4} + \frac{1}{2}\ln 2$ C. $1 + \frac{1}{2}\ln 2$ D. $\frac{3}{4} + \ln 2$ E. $\frac{5}{4} + \frac{1}{2}\ln 2$ F. None of these.
- 3. Find the surface area if the line segment from (3,3) to (7,0) in the x-y plane is rotated about the y-axis. Hint: First compute the length of the line segment.

A. 30π B. 40π C. 50π D. $50\sqrt{5}\pi$ E. $50\sqrt{7}\pi$ F. None of these.

4. What is the surface area when the arc given by $y = \sqrt{4 - x^2}$ for $1 \le x \le 2$ is rotated about the x-axis?

A. 2π B. 4π C. $4\pi\sqrt{3}$ D. $4\pi\sqrt{5}$ E. 8π F. None of these.

5. What is the surface area when the arc given by $y = \sqrt{4 - x^2}$ for $1 \le x \le 2$ is rotated about the *y*-axis?

A. 2π B. 4π C. $4\pi\sqrt{3}$ D. $4\pi\sqrt{5}$ E. 8π F. None of these.

6. Write an integral that represents the surface area when the curve $y = \tan x$, $0 \le x \le \pi/4$ is revolved about the line x = -2.

A.
$$2\pi \int_{0}^{\pi/4} (\tan x) \sqrt{1 + \sec^4 x} \, dx$$

B. $2\pi \int_{0}^{\pi/4} (\tan x + 2) \sqrt{1 + \sec^4 x} \, dx$
C. $2\pi \int_{0}^{\pi/4} x \sqrt{1 + \sec^4 x} \, dx$
D. $2\pi \int_{0}^{\pi/4} (x + 2) \sqrt{1 + \sec^4 x} \, dx$
E. $2\pi \int_{0}^{\pi/4} (\tan x - 2) \sqrt{1 + \sec^4 x} \, dx$
F. None of these.

7. What is the hydrostatic force on a 2 foot by 2 foot square aquarium window whose top is 3 feet below the surface of the water if the density of water is 62.5 lbs/ft³?

8. What is the hydrostatic force on a 2 foot by 2 foot square diamond aquarium window whose top is at the surface of the water if the density of water is 62.5 lbs/ft³?

A. 125 lbs.	B. $125\sqrt{2}$ lbs.
C. 250 lbs.	D. $250\sqrt{2}$ lbs.
E. 500 lbs.	F. $500\sqrt{2}$ lbs.

9. Find the centroid of the half-disk of radius 1 in the x-y plane.

A. $(0, \frac{4}{3\pi})$	B. $(0, \frac{2}{3\pi})$
C. $(0, \frac{\pi}{3\pi})$	D. $(0, \frac{1}{2})$
E. $(0, \frac{2}{5})$	F. None of these.

10. Find the centroid of the following system consisting of a square and an isosceles triangle.

Short Answer (27 points). Fill in the blank with the appropriate answer. 3 points each. A correct answer gets full credit. You will need to show your work for partial credit.

- 11. (a) Give the definition of $\lim_{n\to\infty} a_n = L$
 - (b) A sequence $\{a_n\}$ is defined by $a_1 = 1$ and $a_{n+1} = 4 \frac{1}{a_n}$ for $n \ge 1$. Assuming that the sequence is convergent, find its limit.
 - (c) Find the tenth partial sum S_{10} for the series $\sum_{n=1}^{\infty} (-1)^{n+1}$.
- 12. Evaluate the following limits if they exist. If the limit does not exist, so state. m!
 - (a) $\lim_{n \to \infty} \frac{n!}{2^n} = \underline{\qquad}$

(b)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n =$$

(c)
$$\lim_{n \to \infty} \frac{n^2 + 2}{n^3} =$$

13. Determine whether each series converges or diverges. If it converges, give its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} =$$

(b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} =$ _____
(c) $\sum_{n=1}^{\infty} \frac{2^n}{3^{n+1}} =$ _____

Free Response (33 points). Show all of your work and write the final answer in the blank.

14. Determine whether each series converges or diverges. State any convergence/divergence tests you use. For the Integral Test, evaluate the appropriate integral. For the Comparison Test or Limit Comparison Test give the appropriate comparison series.

(a)
$$\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2 + 3n + 1}{n^3 + 2n^2 + n + 1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 2n^2 + n + 1}}$$

15. How many terms in the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ are needed to find the sum to within $\frac{1}{1000}$? Answer:

16. A region with area 4 lies in the first quadrant of the x-y plane. When the region is revolved about the x-axis, it sweeps out a volume of 12π . When revolved about the y-axis, it sweeps out a volume of 8π . Find the centroid of the region.

Answer:

17. Give an example of a series where the terms go to zero, but the series diverges.

Answer: